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1. Introduction. The mean of order t of t h e  posi t ive values ( X ) ~ ( X ~ S * * * , X ~ )  

with posit ive weights (w) 5 (wl )*.*,  wn) , C wi = 1 , i s  defined [3; 1) by 

(1.1 1 

Homogeneity i n  (x) distinguishes the means b$, from a l l  other  means of t h e  

rami gf {L iii $(xi)], =here 6 is m crb i t rary  f l m c t i ~ n  subject to appro- 

p r i a t e  conditions [3 ,  Theorem 8.41. 
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In t h i s  paper w e  sha l l  generalize $ withcut losing homogeneity. The 

s t a r t i n g  point is t h e  hypergeometric function R ( a ;  b, , ,bn; x1 , ,xn), 

a modified form [2] of Lauricella1.s function FD with t h e  property of  being 

homogeneous of degree - a i n  (x). If a is  real and i f  t h e  parameters (b) 

and var iables  (x) are a l l  posit ive,  then R i s  posit ive.  For any real t and 

posi t ive c ,  we define t h e  llhypergeometric mean valuet1 

M(0,c; x,w) E l i m  M(t,c; x,w) 
t-0 
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The hypergeometric mean is homogeneous i n  (x), and we s h a l l  show (Theorem 1 

t h a t  it includes b$. as a l imit ing case: 

(1 03) M ( t , O ;  x,w) = l i m  M(t,c; x,w) = %(x,w) . 
P O  

Aside from a few changes, most of the properties of % st i l l  hold f o r  M(t,c) 

with c > 0. 

We s h a l l  r e ly  heavily on an in tegra l  representation of t h e  R function 

which exists only f o r  c > 0. However, (1.2) defines M(t,c) a lso f o r  c < 0 

provided t h e  R function is well-defined and positive. The las t  r e s t r i c t ion  i s  

probably a severe one but admits some in te res t ing  cases, par t icu lar ly  t h e  

elsnentary symmetric functions. It does not seem t o  have been observed previ- 

ously t h a t  both these and the  complete symmetric functions a re  of hypergeo- 

metric type: 

(t = 1 ,  2,000 ). 

Et and C are known t o  s a t i s f y  a number of inequal i t ies  [ I ;  31, and several  of 

these  have been extended by Whiteley [ 4 ;  51 t o  a more general class of symmet- 
t 

r i c  foms which are  s t i l l  R polynomials. Theorems 3,  4,  and 5 of the  present 

paper show t h a t  t he  r e s t r i c t ion  t o  polynomials is inessent ia l  i f  c > 0. It is  

conceivable tha t  t h e  known inequalit ies for,polynomials with c < 0 can also 

be incorporated i n  more general theorems. 

2. Definitions and notation. To save repe t i t ion  w e  s t a t e  a t  t he  outset  

Assumption ( A ) .  The real parameters a, t, and c satisfy - (D < a c OJ , 
- < t. < 0 5 c c = . The symbols (b), (x),  (y) ,  and (w) stand f o r  

n-tuples o f  r e a l ,  f i n i t e ,  positive numbers. The weights (w) s a t i s f y  
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We s h a l l  say t h a t  (x) is proportional t o  (y) if the re  exists k such t h a t  

x = k yi, i = I , .** ,  n. The la rges t  among the  values (x t ) =, (xl t ,.*.,xn t ) 
i 

t w i l l  be denoted by max (x ); similarly,  maxll-xl w i l l  denote the  la rges t  abso- 

l u t e  magnitude among the  values (1-x) = (l-xl,***,l-xn). We define (cw) z (cwl, 

***,cwn) and (Irv) =, (X1Y1 ,***,XnYn). 

A prime is  used as a reminder tha t  (u t )  E (u1 9 ,un-l ) i s  an (n-1)-tuple. 

over a We s h a l l  be concerned with integrals  Sf(u1)  dut SE Sf(u1)  dul..* 

domain of integrat ion E = [a l l  (ut) with ui>O (i=l,*.* ,n-1) and n- 1 ui < 11. 

From [ 6 ,  p. 2581 we have 

d‘n-l 

- 

where un E 1 - ul- - u . If we define n-1 

then 

(2.3) 6 P(b,ut) dut = 1 . 
Instead of defining the  R function by a hypergeometric power s e r i e s ,  it is  

more convenient f o r  present purposes t o  use an in t eg ra l  representation [2, 

Eq. (7.1O)I: 
n R(a,b,x) = i (Ci=, u ~ x ~ ) - ~  P(b,ut) dut ., 

- k  (2.4) 

n 
(2 .5 )  log(Ci=l uixi) P(b,ut) dut . 
It is permissible t o  differentiat$lwith respect t o  a under t h e  in tegra l  s ign  

i n  (2.4). By (1.2) we have 

M(t,c; x,w) = [R(-t,cw,x)] l / t  

t u.x.) P(cw,ut) dutI1It, (t f 0, c > 0) ,  
n - (Ci=l  1 1  - E  

M(0,c; x,w) = exp L(cw,x) , (c > 0). 



The last  equation i s  obtained by an application of L'ITospitalcs rule. If 

c > 0 it is  evident t h a t  M(t,c; x,w) is  homogeneous of first degree i n  (x) 

f o r  every r e a l  value of t. 

We s h a l l  use the  notations (a,m) 3 r(a+m)/ r ( a )  = a(atl)...(a+m-l), if 

m i s  a posi t ive in teger ,  and (a,O) i 1. It follows from (2.1) t h a t  

P(b,ul) dul = (bl ,ml ) (bn,mn)/(bl +. .+bn,ml +. .+m ) . i m n 
n 

3. % as a l imi t ing  case of M ( t  ,c) . 
Lemma 1 . Let ( A )  be s a t i s f i e d ,  except t h a t  the  values (x) need not be posi- 

t i v e ,  and l e t  N be any posi t ive integer.Then R(-N,cw,x) is  a continuous func- 

t i on  of c i n  the  in te rva i  0 < c : ~i a d  satisfies (i) !R(-M,cw,x)( 5 maxIxI N , 
n 

w.x N, and (iii) 1L.m R(-N,cw,x) = (Eiz1 n wixi)N* (ii) l i m  R(-M,cw,x) = CiXl 
C?O C- 

N Proof. Since IZ U.X. I N  5 maxlx1 f o r  every (ut) E E, t he  inequal i ty  (i) is 
1 1  

N evident from ( 2 4 ) .  On making a multinomial expansion of (Cuixi) 

(2.7), we find 

and using 

( c y  m )***(Cwn,mn) m l  mn (3.1 ) R(-N,CW,X) = - N 1  c x1 0.. x ' 1  

ml. . .a  m I n '  
(c ,N)  n. 

where the  summation extends over a l l  nonnegative integers  m l , - * * ,  m whose sum 

i s  N. Each term i n  the  sunmation is plainly a continuous function of c i n  
n 

0 e c < (P , and hence R(-N,cw,x) is continuous also. As c - 0, the  quantity 

g = (cwl,m,)-..(cw ,m )/(c,N) tends t o  wi if mi = N f o r  some value of i and n n  

t o  zero otherwise. Hence (3.1) has t h e  l imi t  s ta ted  i n  (ii). As c -. Q) 9 

g - n w i  mi and the  r igh t  s ide  of (3.1) becomes the  multinomial expansion 

ol" the P i x i t  s t s t &  in (ili). 

Theorem 1 L e t  (A) be sa t i s f ied .  Then R(a,cw,x), L(cw,x), and M(t,c; x,w) 
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are  continuous functions of c i n  0 C c < and have the  following limits: 
-a w x  i i  ' l i m  R(a,cw,x) = CiZl 

C* 

l ia L(CW,X) = CiZl n w.log x. , l im L(cw,x) = log(+, n WiXi) , 
C-0 C Y =  

1 

lLa M(t,c; x,w) = %(x,w) , 
c-4  e@- 

l i m  M(t,c; x,w) = M1 (x,w) . 
Proof. The statements r e l s t i ng  t o  M(t,c) follow by (2.6) from those re la t -  

L are  homogeneous functions of (x) ,  ing t o  R and L. Furthermore, since R and e 

we may suppose t h a t  maxll-xl < 1. Since t h i s  implies \Ci-l n ui(l-xi)( 6 max\l-xl<l 

fo r  every (u l )  E E, it is  permissible t o  make a binomial expansion i n  the  

- 

N uixi)-a = [I - cn i=1 u,(l-xi)3 N=O N! 

Because the  i n f i n i t e  s e r i e s  converges uniformly on E, w e  may integrate  

by term t o  obtain 

R(-N,b,l-X) , maxll-xl < I .  OD - (a,N 
(3.2) R(a,b,x) = 'N=O N! 

0 

term 

(The hypergeometric se r ies  f o r  the R function [2] can be recovered from (3.1) 

and (3,2).) An exactly s i x i l a r  argument gives 

OD 

(3.3) L(b,x) = - %=l N-' R(-N,b,l-x) , maxll-xl < I .  

We now put (b) = (cw) and show tha t  t he  se r i e s  (3.2) and (3.3) a re  

uniformly convergent i n  0 < c < QD . From Lemma 1 w e  have IR(-N,cw,l-x)) 

h rnaxIl-xl'. Furthermore, both of t he  following se r i e s  converge i f  maxll-xl< 1:  

Hence, by Weierstrassl M-tesi, the  series (3=2) and (3.3) converge uniformly 

in 0 < c C = . Since the individual terms of  the  ser ies  a re  continuous 
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functions of c by Lemma 1 ,  it follows t h a t  t h e  sums of t h e  series are also 

continuous. 

Uniform convergence i n  0 < c < implies fur ther  t h a t  as c + 0 o r  Q) w e  

can proceed t o  the  linit term by term. Using t h e  limits given i n  Lemma 1 ,  

w e  have f o r  example 

l i m  R(a,cw,x) = 
C - 0  

Three more short  calculations of  the same kind complete the  proof of Theorem 1. 

4. Properties of M(t,c). We s t a t e  i n  Theorem 2 some elementary properties 

t h a t  a r e  apparent from Theorem i and preceding defini t ions,  especial ly  (2.4) 

and (2.6): 

Theorem 2. Let ( A )  be sa t i s f ied .  

(i) If x,= x2= 0 . 0  = x = s ,  then M(t,c; x,w) = 5 .  

(ii) M(t,c; x,w) i s  a continuous function of (x).  

n 

( i i i )  If xi S yi for a l l  i = I , * e *  ,n and x.< yi f o r  some i, then 
1 

Theorem 3. L e t  ( A )  be sa t i s f ied  and assume min(x) < max(x). Then M(t,c; x,w) 

is  a continuous function of t sat isfying 

M(S,c; x,w) c M(t,c; x,w) 

M(t,c; x,w) 4 max(x) 

m(b,c; x,~) 4 min(x) 

i f  s < t ,  

as t -. + QD , 
as t + - Q) . . , f& 

Proof. If c = 0 t h e  assertions reduce by Theorem 1 t o  well-known properties 
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of % r3, Theorems 4 and 161. I f  c > 0 Equations (2.6) express M(t,c; x,w) as 
n t h -  mean %(f )  of - function with values f (u8)  = Xi=? uixi . In  t h e  domain E 

t h e  effect ive bounds [3 ,  p. 1351 of f are m a x  f = max(x) and min f = min(x). 

Theorem 3 then follows a t  once from general properties of M ( f )  [3 ,  pp. 143-1453. 

In the  same manner w e  obtain the next two theorems. The first comes from 
t 

Theorems 87 and 197 of [ 33, i n  which t h e  conditions f o r  s t r i c t  convexity are 

not s ta ted  formally but are apparent from t h e  proofs. The second comes from 

Theorems 24, 198, and 186 of [3]. 

Theorem 4. L e t  ( A )  be sa t i s f ied .  If min(x) max(x) then t log M(t,c; x,w) 

is  a s t r i c t l y  convex function o f  t and log R(a,b,x) is  a s t r i c t l y  convex func- 

t i o n  of a. 

Theorem 5 (Minkowski). L e t  ( A )  be sa t i s f i ed .  If (x) i s  not proportional 

t o  (y), then 

M(t,c; x+y,w) < M(t,c; x,w) t M(t,c; y,w), (t > 1) .  

The inequality is reversed i f  t < 1. 

Theorem 6. If ( A )  i s  sa t i s f i ed  and i f  t # 0 ,  then 

(4.1) M(t,c; x -1 ,w) = [ M , ( X , W ) ] ~ ' ~  [M(-t-c,c; x,w)] -1 -c/t . 
Proof. The R function sa t i s f i e s  t h e  Euler transformation [2] 

(4.2) ~ ( - t , b , x  1 =TIiz1 n X bi R(c+t,b,x) .. -1 

On ra is ing  both s ides  t o  t h e  power l / t  and replacing (b) by (cw), we obtain 

(4.1). The re la t ion  %(x-l ,w) M - t ( ~ , w )  = 1 is included as t h e  case c = 0. 

Corollary 1. If (A) is sa t i s f ied ,  then (i) M ( l  ,c) = M1 , ( i i )  M(-c,c) = Mo 
2 ~ 2  (iii) M(-C-I , C )  = (M-1 Mc! c ) l / ( l+c)  . 

Proof. (i) follows d i r ec t ly  from (3.1); (ii) is  (4.1) with t = -C ; and 
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(iii) is obtained from (4 .1)  by putting t = 1 and using (i). 

Theorem 7 (Holder). Let p and q s a t i s f y  1 < p < co , l/p + l/q = 1. L e t  (A) 

be sa t i s f i ed  and assume (xp) is not proportional t o  (yq). I f  t > 0, o r  i f  

t = 0 and c > 0, then 

( 4 . 3 )  M(t,c; xy,w) < [M(t,c; X ~ , W ) ] ~ / ’  [M(t,c; . 
The inequality is  reversed i f  t < - C. 

Proof. If c = 0 the  theorem reduces t o  Holder’s inequal i ty  [ 3 ,  Theorem 123 

i n  t h e  form %(xy,w) < M 

i f  t < 0. Putting t = 1 and ( w )  = ( u ) ,  we have the  more famil iar  form 

(x,w) M (y,w) i f  t > 0, with reversed inequal i ty  
Pt qt  

X uix.yT. < (C U , X , ~ ) ” ~  (C u.y. 9 ) l/q , (ut) E E . 1 1 1  L A  1 1  
(4.41 

We take  the logarithm of each s ide  of (4.4), in tegra te  over E with P(c,ut) as 

weight function, and then take the  exponential of each s ide  t o  prove Theorem 7 

i n  t h e  case t = 0,  c > 0. If t > 0 and c > 0, we r a i s e  both sides of (4 .4)  t o  

t h e  power t ,  integrate  over E ,  and apply Holderts inequal i ty  f o r  in tegra ls  t o  

t h e  sirght s ide  t o  obtain 

t (C uixiyi) P dut < [ (C P d ~ t ] ” ~  [ (C P d ~ t ] ’ / ~ .  

Raising both s ides  of (4 .5 )  t o  the power l / t  gives t h e  desired resu l t .  To ob- 

t a i n  the  reversed inequal i ty  

(y-’) i n  (4 .3)  and transform 

t o r s  Mo cancel, and unwanted 

t h e  inequal i ty  t o  a negative 

inequal i ty .  

i f  t < - c ,  w e  replace .(x) by (x-’) and (y) by 

each of t he  three  mean values by ( 4 . 1 ) .  The fac- 

exponents a re  removed by ra i s ing  both s ides  of 

power, thereby reversing the  d i rec t ion  of t h e  

We remark t h a t  ~ ( i , c ;  x,u> is a special  case o f  t he  still  more general 

mean value [M(t,c; xS,w)l1/’ which occurs on the r igh t  s ide  of (4 .3 ) .  The 
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addi t ional  parameter s leads t o  nothing new if c = 0, for we then obtain 

Mst(x,w). If c > 0, however, we have a three-parameter family of homogeneous 

means which includes Gausst arithmetic-geometric mean as the  case n = 2, 
I 

wl= w2= + , s = 2, t = - + , c = l *  

The next and f i n a l  theorem follows d i r ec t ly  from Dresherls inequal i ty  

for in tegra ls  [I]. As i n  preceding theorems, t he  assumptions are so s ta ted  as 

t o  exclude cases of equality.  

Theorem 8 (Beckenbach-Dresher). Let ( A )  be sa t i s f i ed  and l e t  s and t 

s a t i s f y  (i) 1 < t < m , 

N(s,t,c; x,w) 3 

o 5 s 5 1 or (ii) t = 1, o < s < 1. Define 



10. - . .  
* 

, * b 

References 

1. E. F. Beckenbach and R. Bellman, Inequalities, Ergebnisse der Math- 

ematik, Springer, Berlin, 1961. 

2. B. C. Carbon, Lauricella*s hypergeometric function FD , J. Math. Anal. 

Apple 7 (1963) 9 452-470. 

3. G. H. Hardy, J. E. Littlewood, and G. P6lya, Inequalities, 2nd ed. , 
Cambridge Univ. Press, Cambridge, 1959. 

4. J. N. Whiteley, Some inequalities concerning symmetric forms, Mathema- 

tika 5 (1958), 49-57. 

5. , A generalization of a theorem of Newton, Proc. Amer. 

Math. SOC. 13 (1962), 144-151. 

6. E. T. Whittaker and G. N. Watson, Modern analysis, 4th ed., Cambridge 

Univ. Press, Cambridge, 1946, p. 258. 


